Part Number Hot Search : 
3084E 2907A 2904S K400101 D4104 26LS32 E2SAA18 D4N60
Product Description
Full Text Search
 

To Download IRLR9343TRRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 12/07/04 notes   through  are on page 10 description this digital audio hexfet ? is specifically designed for class-d audio amplifier applications. this mosfet utilizes the latest processing techniques to achieve low on-resistance per silicon area. furthermore, gate charge, body-diode reverse recoveryand internal gate resistance are optimized to improve key class-d audio amplifier performance factors such as efficiency, thd and emi. additional features of this mosfet are 175c operating junction temperature and repetitive avalanche capability. these features combine to make this mosfet a highly efficient, robust and reliable device for class-d audio amplifier applications. 
features  advanced process technology   key parameters optimized for class-d audio amplifier applications  low r dson for improved efficiency  low q g and q sw for better thd and improved efficiency  low q rr for better thd and lower emi  175c operating junction temperature for ruggedness  repetitive avalanche capability for robustness and reliability  multiple package options  lead-free s d g  
 v ds -55 v r ds(on) typ. @ v gs = -10v 93 m r ds(on) typ. @ v gs = -4.5v 150 m q g typ. 31 nc t j max 175 c key parameters irlr9343pbfirlu9343pbf irlu9343-701pbf i-pak leadform 701 irlu9343-701 refer to page 10 for package outline d-pak irlr9343 i-pak irlu9343 absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ -10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range clamping pressure  n thermal resistance parameter typ. max. units r jc junction-to-case  CCC 1.9 r ja junction-to-ambient (pcb mounted)  CCC 50 c/w r ja junction-to-ambient (free air)  CCC 110 max. -14 -60 20 -55 -20 -40 to + 175 CCC 7939 0.53 downloaded from: http:///


2 www.irf.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage -55 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC -52 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 93 105 m ? CCC 150 170 v gs(th) gate threshold voltage -1.0 CCC CCC v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -3.7 CCC mv/c i dss drain-to-source leakage current CCC CCC -2.0 a CCC CCC -25 i gss gate-to-source forward leakage CCC CCC -100 na gate-to-source reverse leakage CCC CCC 100 g fs forward transconductance 5.3 CCC CCC s q g total gate charge CCC 31 47 q gs gate-to-source charge CCC 7.1 CCC v gs = -10v q gd gate-to-drain charge CCC 8.5 CCC i d = -14a q godr gate charge overdrive CCC 15 CCC see fig. 6 and 19 t d(on) turn-on delay time CCC 9.5 CCC t r rise time CCC 24 CCC t d(off) turn-off delay time CCC 21 CCC ns t f fall time CCC 9.5 CCC c iss input capacitance CCC 660 CCC c oss output capacitance CCC 160 CCC pf c rss reverse transfer capacitance CCC 72 CCC c oss effective output capacitance CCC 280 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s @ t c = 25c continuous source current CCC CCC -20 (body diode) a i sm pulsed source current CCC CCC -60 (body diode)  v sd diode forward voltage CCC CCC -1.2 v t rr reverse recovery time CCC 57 86 ns q rr reverse recovery charge CCC 120 180 nc v gs = -4.5v, i d = -2.7a  CCC 120 see fig. 14, 15, 17a, 17b v ds = v gs , i d = -250a v ds = -55v, v gs = 0v v ds = -55v, v gs = 0v, t j = 125c v gs = -20v v gs = 20v i d = -14a typ. max. ? = 1.0mhz, see fig.5 v gs = 0v, v ds = 0v to -44v v gs = 0v t j = 25c, i f = -14a di/dt = 100a/s  t j = 25c, i s = -14a, v gs = 0v  showing the integral reverse p-n junction diode. conditions v gs = 0v, i d = -250a reference to 25c, i d = -1ma v gs = -10v, i d = -3.4a  mosfet symbol r g = 2.5 ? v ds = -25v, i d = -14a v ds = -44v conditions and center of die contact  v dd = -28v, v gs = -10v  v ds = -50v downloaded from: http:///


www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 6. typical gate charge vs.gate-to-source voltage fig 5. typical capacitance vs.drain-to-source voltage 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c -2.5v vgs top -15v -12v -10v -8.0v -5.5v -4.5v -3.0v bottom -2.5v 0.1 1 10 100 -v ds , drain-to-source voltage (v) 0.1 1 10 100 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c -2.5v vgs top -15v -12v -10v -8.0v -5.5v -4.5v -3.0v bottom -2.5v 0.0 5.0 10.0 15.0 -v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 - i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = -25v 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = -14a v gs = -10v 1 10 100 -v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 02 03 04 05 0 q g total gate charge (nc) 0 4 8 12 16 20 - v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = -44v vds= -28v vds= -11v i d = -14a for test circuit see figure 19 downloaded from: http:///


4 www.irf.com fig 11. maximum effective transient thermal impedance, junction-to-case fig 10. threshold voltage vs. temperature fig 9. maximum drain current vs. case temperature fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 - i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t j , junction temperature (c) 0 4 8 12 16 20 - i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = -250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 1.162 0.0005120.7370 0.002157 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci= i / ri ci= i / ri 1 10 100 1000 -v ds , drain-tosource voltage (v) 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///


www.irf.com 5 fig 13. maximum avalanche energy vs. drain current fig 12. on-resistance vs. gate voltage fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 17a, 17b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 4.0 6.0 8.0 10.0 -v gs , gate-to-source voltage (v) 0 100 200 300 400 500 600 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = -14a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top -4.0a -5.5a bottom -14a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = -14a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 - a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 downloaded from: http:///


6 www.irf.com fig 19a. gate charge test circuit fig 19b gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 16.       for p-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"          1k vc c dut 0 l   ! " #  $     ! "   t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds v dd driver a 15v -20v %&  
 %&'( #  $  
 %&'(   v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f    
      '( 1 ) 
#   0.1 %          + - downloaded from: http:///


www.irf.com 7  

  

  
      
   12 in the assembly line "a" as s e mbled on ww 16, 1999 example: wi t h as s e mb l y this is an irfr120 lot code 1234 year 9 = 199 9 dat e code week 16 part number logo international rectifier as s e mb l y lot code 916a irf u 120 34 ye ar 9 = 1999 dat e code or p = de s i gnat e s l e ad- f r e e product (optional) note: "p" in as s embly line position i ndi cates "l ead-f r ee" 12 34 we e k 1 6 a = as s e mb l y s i t e code part number irf u 120 line a logo lot code assembly international rectifier downloaded from: http:///


8 www.irf.com  
   
      
    
  as s e mb l y example: wi t h as s e mb l y t his is an irfu120 ye ar 9 = 199 9 dat e code line a we e k 19 in the as sembly line "a" ass embled on ww 19, 1999 lot code 5678 part number 56 irfu120 internat ional logo rect ifier lot code 919a 78 note: "p" in as sembly line pos ition indicates "l ead-f ree"  56 78 assembly lot code rect ifier logo int ernat ional irf u120 part number we e k 19 dat e code year 9 = 1999 a = assembly site code p = de s i gnat e s l e ad-f r e e product (optional) downloaded from: http:///


www.irf.com 9  

  
   
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch downloaded from: http:///


10 www.irf.com data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/04   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.24mh, r g = 25 ? , i as = -14a.  pulse width 400s; duty cycle 2%.  this only applies for i-pak, l s of d-pak is measured between lead and center of die contact  r is measured at t j of approximately 90c. 
 contact factory for mounting information  limited by tjmax. see figs. 14, 15, 17a, 17b for repetitive avalanche information   when d-pak mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994  refer to d-pak package for part marking, tape and reel information.  ! "#   
   
  downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLR9343TRRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X